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Abstract
We determined the potentials of mean force corresponding to the bending of
Cα · · · Cα · · · Cα virtual-bond angles (θ ) for use in our united-residue (UNRES)
force field. The potentials were determined by integrating the ab initio energy
surfaces of terminally-blocked glycine, alanine, and proline calculated in our
earlier work at the MP2/6-31G(d, p) level (Ołdziej et al 2003 J. Phys. Chem.
A 107 8035), where alanine represents all types of amino-acid residues except
for glycine and proline. This resulted in 27 different free-energy surfaces. The
potentials were found to depend both on θ and on the two virtual-bond dihedral
Cα · · · Cα · · · Cα · · · Cα angles (γ1 and γ2) whose axes are the edges of θ , as
well as on the types of all three consecutive amino-acid residues whose Cα

atoms define the angle θ . The type of residue at the second and third position
of a triad has a major influence on the potentials, while that in the first position
is less important. Each surface was fitted well by a three-dimensional Fourier
series in the trigonometric functions of multiplicities of θ/2, γ1, and γ2; these
analytical expressions can readily be implemented in the UNRES force field,
thus replacing our earlier knowledge-based virtual-bond valence potentials.

M Supplementary data are available from stacks.iop.org/JPhysCM/19/285203

1. Introduction

Nowadays, ab initio all-atom simulations (i.e., those starting from completely unfolded
structures) of protein structure and folding are too expensive, and can be applied successfully
only to small proteins even when the solvent is treated implicitly [1–4]. Therefore, during the
last decade, we have been developing a mesoscopic physics-based force field termed UNRES
(for UNited RESidue) [5–12]. By contrast to most united-residue force fields, which are
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largely knowledge-based potentials, UNRES was carefully derived, based on the physics of
interactions, as a cluster–cumulant expansion [13] of the restricted free energy (RFE) function
of a protein plus the surrounding solvent, in which the secondary degrees of freedom had been
averaged out [7, 8, 10]. The force field is capable of ab initio prediction of the structures of
proteins of different structural classes with good accuracy, as demonstrated in the CASP3–
CASP6 blind-prediction experiments [14–16]; these results were obtained by predicting the
native structure of a protein as the global minimum in the UNRES energy surface.

Recently [17–19], by developing the Langevin-dynamics formalism for UNRES, we
extended its application to simulating protein-folding pathways. We found [19] that ab initio
folding of real-size proteins can be simulated with this approach, and that UNRES provides a
4000-fold speed-up compared to all-atom simulations with explicit water and about a 200-fold
speed-up compared to all-atom simulations with implicit water.

The present version of UNRES contains two types of local knowledge-based terms, both
in functional form and parameterization, determined in our earlier work [6] from the statistics
of the protein data bank (PDB) [20]; these are the virtual-bond-angle bending potentials and
the potentials determining the energetics of side-chain rotamers. These terms do not determine
the fold of the chain and, therefore, do not impair the overall characterization of UNRES as
a physics-based force field. Nevertheless, these short-range terms determine the details of the
geometry of the polypeptide chains particularly in the loop regions. It should be noted that
the PDB statistics used to derive them is biased by long-range interactions which certainly
impairs the accuracy of these local potentials and, consequently, the accuracy of the calculated
structures. Moreover, we found that the functional forms that best fit the PDB statistics [6]
may result in unstable forces in UNRES/MD simulations [17]. Therefore, in this work,
we determined physics-based virtual-bond-angle bending potentials for UNRES by using our
general approach [8] of factoring the RFE of the polypeptide chains into contributions coming
from specific types of interactions together with the energy maps of terminally-blocked glycine,
alanine, and proline calculated in our earlier work [9]. The new physics-based potentials will
replace the statistical potentials determined in our earlier work [6] from PDB statistics.

2. Methods

2.1. The UNRES force field

In the UNRES model [5–12] a polypeptide chain is represented by a sequence of α-carbon
(Cα) atoms linked by virtual bonds with attached united side chains (SC) and united peptide
groups (p). Each united peptide group is located in the middle between two consecutive α-
carbons. Only these united peptide groups and the united side chains serve as interaction
sites, the α-carbons serving only to define the chain geometry, as shown in figure 1. The
UNRES force field has been derived as an RFE function of an all-atom polypeptide chain plus
the surrounding solvent, where the all-atom energy function is averaged over the degrees of
freedom that are lost when passing from the all-atom to the simplified system (namely the
degrees of freedom of the solvent, the dihedral angles χ for rotation about the bonds in the
side chains, and the torsional angles λ for rotation (figure 2) of the peptide groups about the
Cα · · · Cα virtual bonds) [7, 8]. The RFE is further decomposed into factors coming from
interactions within and between a given number of united interaction sites [8]. Expansion of
the factors into generalized Kubo cumulants [13] enabled us to derive approximate analytical
expressions for the respective terms [7, 8], including the multibody or correlation terms, which
are derived in other force fields from structural databases or on a heuristic basis [21]. The
theoretical basis of the force field is described in detail in our earlier paper [8].
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Figure 1. The UNRES model of the polypeptide chain. Dark circles represent united peptide groups
(p), and open circles represent the Cα atoms, which serve as geometric points. Ellipsoids represent
side chains, SCs, with their centres of mass at the bSC. The p’s are located half-way between two
consecutive Cα atoms. The virtual-bond angles θ , the virtual-bond dihedral angles γ , and the angles
αSC and βSC that define the location of a side chain with respect to the backbone are also indicated.

Figure 2. Illustration of a model system for the calculation of the potentials of mean force of the
bending of the virtual-bond angles θ . The variables over which to integrate are the torsional angles
of rotation of the peptide groups about the Cα · · · Cα virtual-bond axes: λ1 (about Cα

0 · · · Cα
1 ), λ2

(about Cα
1 · · · Cα

2 ), λ3 (about Cα
2 · · · Cα

3 ), and λ4 (about Cα
3 · · · Cα

4 ), while the virtual-bond angle θ

and the virtual-bond dihedral angles γ1 and γ2 are the primary variables.

The energy of the virtual-bond chain is expressed by equation (1).

U = wSC

∑

i< j

USCi SC j + wSCp

∑

i �= j

USCi p j + wVDW
pp

∑

i< j−1

U VDW
pi p j

+ wel
pp

∑

i< j−1

U el
pi p j

+ wtor

∑

i

Utor(γi) + wtord

∑

i

Utord(γi , γi+1)

+ wb

∑

i

Ub(θi) + wrot

∑

i

Urot(αSCi , βSCi ) + w(3)
corrU

(3)
corr + w(4)

corrU
(4)
corr

+ w(5)
corrU

(5)
corr + w(6)

corrU
(6)
corr

+ w
(3)
turnU (3)

turn + w
(4)
turnU (4)

turn + w
(6)
turnU (6)

turn + wbond

nbond∑

i=1

Ubond(di). (1)

3



J. Phys.: Condens. Matter 19 (2007) 285203 U Kozłowska et al

Each term is multiplied by an appropriate weight, wx . The term USCi SC j represents the
mean free energy of the hydrophobic (hydrophilic) interactions between the side chains,
which implicitly contains the contributions from the interactions of the side chain with the
solvent. The term USCi p j denotes the excluded-volume potential of the side-chain–peptide-
group interactions. The peptide-group interaction potential is split into two parts: the
Lennard-Jones interaction energy between peptide-group centres (U VDW

pi p j
) and the average

electrostatic energy between peptide-group dipoles (U el
pi p j

); the second of these terms accounts
for the tendency to form backbone hydrogen bonds between peptide groups pi and p j .
The terms Utor, Utord, Ub, and Urot are the virtual-bond dihedral angle torsional terms,
virtual-bond dihedral angle double-torsional terms, virtual-bond angle bending terms, and
side-chain rotamer terms; these terms account for the local propensities of the polypeptide
chain. The terms U (m)

corr represent correlation or multibody contributions from the coupling
between backbone–local and backbone–electrostatic interactions, and the terms U (m)

turn are
correlation contributions involving m consecutive peptide groups; they are, therefore, termed
turn contributions. The multibody terms are indispensable for reproduction of regular α-
helical and β-sheet structures [7, 8, 21]. The terms Ubond(di), where di is the length of the
i th virtual bond and nbond is the number of virtual bonds, are simple harmonic potentials
of virtual-bond distortions; they have been introduced recently [17] for molecular-dynamics
implementation.

The internal parameters of U VDW
pi p j

, U el
pi p j

, Utor, Utord, U (m)
corr , and U (m)

turn were recently derived
by fitting the analytical expressions to the RFE surfaces of model systems computed at the
MP2/6-31G∗∗ ab initio level [9, 10], while the parameters of USCi SC j , USCi p j , Ub, and Urot were
derived by fitting the calculated distribution functions to those determined from the PDB [6];
work is currently in progress to obtain these parameters from quantum mechanical ab initio
calculations of the potentials of mean force of appropriate model systems. The ws are the
weights of the energy terms, and they can be determined only by optimization of the potential-
energy function, as described in our earlier work [11].

2.2. Determination of physics-based Ub potentials

As mentioned in sections 1 and 2.1, the current virtual-bond-angle bending potentials were
derived in our earlier work [6] based on the distribution of virtual-bond angles determined from
the PDB for all 20 types of amino-acid residues as functions of the angle θ and the neighbouring
virtual-bond dihedral angles γ1 and γ2 (see figure 2 for definition). The dependence on γ1 and
γ2 was introduced following an observation made earlier by Levitt [22] that there is a correlation
between the angle θ and the neighbouring virtual-bond dihedral angles. The distributions
were subsequently fitted with sums of Gaussian components by using the maximum-likelihood
principle, and the potentials of mean force were calculated as the negatives of the logarithms
of the distributions [6]. Such an approach is not free from a bias, because the statistics of
the angles θ determined from the PDB are influenced by long-range interactions; the statistics
were also insufficient to determine the potentials that would depend on the type of all three
amino-acid residues that constitute a virtual-bond angle.

In this work, in order to determine physics-based Ub terms, we have implemented our
earlier-developed formalism [8] in which the RFE of a polypeptide chain is factored into
components, each of which corresponds only to interactions involved in a particular RFE
term. The advantage of such an approach is twofold: first, there is no bias coming from other
interactions which can appear in other approaches in which the complete energy of model
systems is computed and, second, this approach enables us to use high-quality energy surfaces
calculated at a quantum-mechanical level.
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Figure 3. Definition of the dihedral angles λ(1) and λ(2) for rotation of the peptide groups about the
Cα–Cα virtual bonds (dashed) of a peptide unit.

The model system used to calculate the potentials of mean force corresponding to the
bending of virtual-bond angles θ is shown in figure 2; this system was used in our recent
work [9] to determine the double-torsional potentials, Utord. The variables to be averaged out
are the angles λ1 − λ4 for rotation of the peptide groups about the Cα

i · · · Cα
i+1 virtual-bond

axes as well as other variables that do not belong to the UNRES degrees of freedom (i.e., the
angles of rotation of the methyl groups, the distortions of the bond lengths and angles, and the
out-of-plane distortions of the peptide groups). We will denote these other variables by y1 for
peptide unit X , y3 for peptide unit Z , and y′

2 for peptide unit Y ; the ‘prime’ symbol indicates
the fact that the space spanned by y′

2 is orthogonal to the virtual-bond angle θ centred at peptide
unit Y . Because Ub pertains to local-interaction terms, we compute the part of the free energy,
FXY Z (θ, γ1, γ2), of the system shown in figure 2 which arises from the local interactions of the
peptide units X , Y , and Z , as given by equation (2).

FXY Z (θ, γ1, γ2) = −β−1 ln

{
(2π)−4(Vy1 Vy′

2
Vy3)

−1

×
∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

∫

	y1

∫

	y′
2

∫

	y3

exp
{−β

[
eX (λ1, γ1 − π − λ2, y1)

+ eY (θ, λ2, γ2 − π − λ3, θ, y′
2)

+ eZ (λ3, λ4, y3)
]}

dλ1 dλ2 dλ3 dλ4 dVy1 dVy′
2

dVy3

}
(2)

where β = (RT )−1, T being the absolute temperature and R the universal gas constant, 	y1 ,
	y′

2
, and 	y3 denote the regions of space corresponding to y1, y′

2, and y3, whereas dVy1 , dVy′
2
,

and dVy3 denote the respective volume elements, eX , eY , and eZ denote the energy surfaces of
peptide units X , Y , and Z (the symbols also indicate residue types). These energy surfaces are
represented by the energy surfaces of terminally-blocked amino-acid residues, as in our earlier
work [9]. The primary variables of these energy surfaces are the local angles for rotation about
the Cα · · · Cα virtual-bond axes λ(1) and λ(2) first introduced by Nishikawa et al [23]; these
angles are defined in figure 3. It should be noted that the angles λ(1) and λ(2) are defined only
within a given peptide unit (X , Y , or Z ; figure 2), as opposed to angles λ1 − λ4 of figure 2,
which are defined for the entire model tripeptide. The relationship between the local angles
λ(1) and λ(2) of residues X , Y , and Z and the angles λ1 − λ4 shown in figure 2 is given by
equations (3)–(5) [23].

λ
(1)
X = λ1 λ

(2)
X = γ1 − π − λ2 (3)
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λ
(1)

Y = λ2 λ
(2)

Y = γ2 − π − λ3 (4)

λ
(1)
Z = λ3 λ

(2)
Z = λ4. (5)

As in our earlier procedures for computations of the Utor [8, 9], Utord [9], and U (m)
corr [8, 10]

potentials, we assume that the backbone and its closest surroundings (the Cβ atoms for non-
glycine and non-proline residues and the Cβ , Cγ , and Cδ atoms for proline) contribute to Ub.
Consequently, we distinguish three basic types of amino-acid residues: glycine, alanine, and
proline, where alanine represents all non-glycine and non-proline residues. Hence, to calculate
F of equation (2), we use the energy maps of N-acetyl-N ′ -methyl glycine, alanine, and proline,
if a residue is not followed by proline and the energy maps of N-acetyl-N ′ ,N ′-dimethyl glycine,
alanine, and proline for those residues X and Y which are followed by a proline residue (to
account for the replacement of a hydrogen atom with a carbon atom in a proline residue).

In our earlier work [9] we calculated non-adiabatic energy maps of terminally-blocked
glycine, alanine, and proline using the ab initio quantum mechanics at the MP2/6-31G(d, p)
level as functions of the λ(1) and λ(2) angles, i.e., each point of a map corresponds to an energy
minimized with respect to all degrees of freedom except λ(1) and λ(2). To compute the integrals
corresponding to the torsional and double-torsional potentials we assumed that the dominant
contributions to the partition functions at T = 298 K come from the points of the maps. In
other words, we neglected the integration over y, and the integrals were reduced to summing
over the non-adiabatic energy maps [9, 10]. This approach cannot be implemented here because
we need to compute integrals corresponding to given values of the angle θ at the central residue
Y (figure 2), which means that we cannot use the non-adiabatic energy map of Y in which,
for each pair of λ(1) and λ(2) angles, θ takes a value of θ∗(λ(1), λ(2)) corresponding to an
energy-minimized conformation (subject to given λ(1) and λ(2)). On the other hand, numerical
integration over y with energies computed in the ab initio approach would be prohibitively
expensive. Therefore, we use the harmonic approximation of eY (λ(1), λ(2), θ, y′

2) to compute
the integral given by equation (2) for an arbitrary value of θ .

eY (λ(1), λ(2), θ, y′) ≈ e∗
Y (λ(1), λ(2)) + 1

2 H ∗
θθ(λ

(1), λ(2))�θ∗(λ(1), λ(2))2

+ H∗
θy′(λ

(1), λ(2))�y′∗(λ(1), λ(2))�θ∗(λ(1), λ(2))

+ 1
2Δy′∗T(λ(1), λ(2))H∗

y′y′(λ
(1), λ(2))Δy′∗ (6)

with

e∗
Y (λ(1), λ(2)) = eY (λ(1), λ(2), θ∗, y′∗) (7)

H ∗
θθ(λ

(1), λ(2)) = ∂2eY (λ(1), λ(2), θ∗, y′∗)
∂θ2

(8)

H ∗
θy′

k
(λ(1), λ(2)) = ∂2eY (λ(1), λ(2), θ∗, y′∗)

∂θ∂y ′
k

(9)

H ∗
y′

k y′
l
(λ(1), λ(2)) = ∂2eY (λ(1), λ(2), θ∗, y′∗)

∂y ′
k∂y ′

l

(10)

�θ∗(λ(1), λ(2)) = θ − θ∗(λ(1), λ(2)) (11)

�y′∗ = y′ − y′∗(λ(1), λ(2)) (12)

where the superscript ‘T’ denotes the transpose of a matrix or a vector, H denotes a Hessian
matrix, and the asterisks indicate the values corresponding to the points on the non-adiabatic
energy maps (i.e., y∗ and θ∗ denote these variables at a conditional minimum of the energy
given the values of λ(1) and λ(2)). For clarity we omitted the subscript 2 from y and the subscript
Y from λ(1) and λ(2). The terms with the first derivatives of eY are not present in equation (6)

6



J. Phys.: Condens. Matter 19 (2007) 285203 U Kozłowska et al

because e∗
Y (λ(1), λ(2)) has been minimized with respect to all variables except for λ(1) and λ(2)

which are held constant.
Use of a harmonic approximation in equation (6) is justified here because reaching

a geometry corresponding to a given value of the virtual-bond angle θ from that which
corresponds to θ∗ (which, in turn, corresponds to the geometry optimized for given values of
λ(1) and λ(2)) requires mainly the distortions of the real valence angles at the Cα atoms. Because
we are computing the statistical sums in equation (2) for T = 298 K, the thermally accessible
states lie within RT ≈ 0.7 kcal mol−1. Also, the energy has a single minimum as a function
of a given real valence angle. Consequently, assuming a typical value of the force constant of
about 100 kcal mol−1 rad−2 in the expression for the bending energy of a real valence angle,
we obtain about 7◦ distortion of a valence angle, which is acceptable (larger distortions for
which anharmonic terms in the energy expansion are important give insignificant contributions
to the statistical sums). It should also be noted that our use of the harmonic approximation is
similar to computing the oscillation part of the partition function of rigid polyatomic molecules,
which gives quite accurate values [24]. With λ(1) and λ(2) fixed, and neglecting the minor
contributions from the rotation of the methyl groups, the systems considered can be treated as
rigid molecules. It should be noted that we do not use the harmonic approximation to compute
the statistical sum over the angles λ(1) and λ(2), but we evaluate these parts of the integrals in
equation (2) numerically. For eX and eZ , we use the approximation of our earlier work [9, 10]
(equations (13) and (14)).

eX (λ(1), λ(2), y1) ≈ eX (λ(1), λ(2), y∗
1) (13)

eX (λ(1), λ(2), y3) ≈ eX (λ(1), λ(2), y∗
3). (14)

After inserting equations (6), (13), and (14) into equation (2) and integrating over y1, y′
2,

and y3, we obtain equation (15).

FXY Z (θ, γ1, γ2) ≈ −β−1 ln

{
2−4π−(4+N/2)V −1

y′
2

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

(det H∗
y′∗

2 y′∗
2
)−

1
2

× exp
{−β

[
e∗

X + e∗
Y + e∗

Z

+ 1
2 (Hθ∗θ∗ − 1

4 H∗
θ∗y′∗

2
H∗−1

y′∗
2 y′∗

2
H∗

θ∗y′∗
2

T
)�θ∗2

]}
dλ1 dλ2 dλ3 dλ4

}
(15)

where, for clarity, we omitted the variables λ1 − λ4 from e∗
X , e∗

Y , e∗
Z , H∗

y′∗
2 y′∗

2
, H∗

θ∗y′∗
2
, and �θ .

As in our earlier work [9], we evaluate FXY Z defined by equation (15) by numerical
quadrature on a four-dimensional grid in λ1−λ4. The bin lengths in λ1−λ4 were 15◦, consistent
with the grid size of the calculated maps [9]. In this work we calculated the Hessian matrices
of terminally-blocked amino-acid residues for the geometries corresponding to all points of
the grid considered in our earlier work [9] at the quantum-mechanical ab initio RHF/6-31G(d,
p) level, and transformed these matrices into internal coordinates. We used the GAMESS
program [25] to carry out the quantum-mechanical calculations. Calculations at the MP2
level would be too expensive to carry out and given the fact that they have been carried out
to estimate how the energy function behaves outside the non-adiabatic energy maps using the
harmonic approximation (equation (6)) which neglects higher derivatives of the energy, and
not to compare, for example, the theoretical and experimental IR frequencies, the RHF level is
sufficient for the purpose of our work.

The Ub potentials can now be defined by equation (16) as the difference between
the approximate FXY Z (θ, γ1, γ2) and the quantity F XY Z (γ1, γ2) defined by equation (17)
calculated by integrating over all degrees of freedom of the tripeptide except the angles γ1

and γ2; F XY Z (γ1, γ2) is a sum of torsional and double-torsional terms which have already been

7
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introduced and parameterized using ab initio energy surfaces in our earlier work [9].

Ub,XY Z (θ, γ1, γ2) = FXY Z (θ, γ1, γ2) − F̄XY Z (γ1, γ2) (16)

F̄XY Z (γ1, γ2) = −β−1 ln

{
(2π)−4

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

exp
{−β

[
e∗

X + e∗
Y

+ e∗
Z

]}
dλ1 dλ2 dλ3 dλ4

}
. (17)

After the Ub,XY Z (θ, γ1, γ2) surfaces were calculated, we fitted each of them with a three-
dimensional Fourier series in θ/2, γ1, and γ2 defined by equation (18). The use of θ/2 instead
of θ as a basic variable is motivated by the fact that the squares of interatomic distances within
a peptide unit (figure 3) are naturally expressed in terms of powers of cos(θ/2) and sin(θ/2).
To keep the number of terms to an absolute minimum, we used only the terms with sines of the
multiplicities of θ/2, which resulted in as good fit as after including both sines and cosines of
the multiplicities of θ/2.

Ub(θ, γ1, γ2) = a◦ +
10∑

l=1

al sin(lθ/2)

+
4∑

l=1

6∑

m=1

sin(lθ/2)[blm cos(mγ1) + clm sin(mγ1)

+ dlm cos(mγ2) + elm sin(mγ2)]

+
4∑

l=1

4∑

m=2

m−1∑

n=1

sin(lθ/2){ f +
lmn cos[mγ1 + (n − m)γ2]

+ f −
lmn cos[mγ1 − (n − m)γ2]

+ g+
lmn sin[mγ1 + (n − m)γ2] + g−

lmn sin[mγ1 − (n − m)γ2]}. (18)

We used linear least-squares fitting to determine the coefficients. Tables of the coefficients
for all 27 model tripeptides are provided with the supplementary material (available at
stacks.iop.org/JPhysCM/19/285203).

3. Results and discussion

Selected contour plots of Ub,XY Z (θ, γ1, γ2) for γ1 = 180◦ (the left part of the model chain
shown in figure 2 in extended conformation), γ1 = 60◦ (right-handed α-helix) and γ1 =
−60◦ (left-handed α-helix) are shown in figure 4. Because alanine-type residues occur most
frequently, we first show the effect of replacement of the X , Y , or Z residue in the AAA triad by
glycine and proline; additionally, we also show plots for the APP, AGP, APG, and AGG triads.
It can be seen from figure 4 that Ub,XY Z (θ, γ1, γ2) depends not only on the type of the central
(Y ) residue but also on those of the terminal (X and Z ) residues. In the current UNRES force
field, this dependence is neglected because Ub was parameterized [6] based on PDB statistics
which were insufficient to determine the dependence of the potentials on the three different
residue types.

For the AAA-type triad, which occurs most frequently in protein sequences, the θ − γ2

maps exhibit two low-energy regions, one centred about θ = 100◦ and another one about
θ = 140◦. The second region does not appear for γ1 = −60◦, while for γ1 = 60◦ and
γ1 = 180◦ it appears for negative γ2 values. This means that θ > 90◦ occurs for the AAA triads
when at least one neighbouring γ angle is extended (because −90◦ < γ2 < 0◦ correspond to
left-handed helices which are energetically unfavourable). The first region (with θ around 100◦)
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Figure 4. Selected contour plots of Ub,XY Z (θ, γ1, γ2) virtual-bond angle potentials determined in
this work by using the ab initio energy surfaces of terminally-blocked glycine, alanine, and proline
(equation (16)) in θ and γ2 for γ1 = −60◦, 60◦, and 180◦. Residue types are shown above each
panel.

corresponds to conformations with at least one γ angle corresponding to the folded α-helical
region. This finding is consistent with the earlier observation made by Levitt [22] based on
protein statistics.

We have expanded the comparison based on [22] by making scatter plots of the (γ2, θ)

pairs determined for the AAA-type triads from the database of proteins structures selected in
our earlier work [6] to derive the statistical potentials (the statistics were insufficient to make
a reasonable comparison for the other types of triads). We present three plots for γ1 drawn for
intervals centred at −60◦, 60◦, and 180◦, respectively and width 60◦. It can be seen that, in
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Figure 4. (Continued.)

figure 5, the density of points reflects the shapes of the sections (figure 4) of Ub(θ, γ1, γ2)

of the AAA triad. For γ2 centred at −60◦ the points are scattered in γ2 but concentrated
about θ ≈ 90◦ for positive values of γ2 and around θ ≈ 120◦ for negative values of γ2,
which follows the minimum valley of Ub(θ, γ1, γ2) for γ1 = −60◦. For γ1 = 60◦, there are
three clusters of points reflecting the minima of the corresponding plot of Ub(θ, γ1, γ2) and
the fact that the region of the minimum at positive γ2 extends beyond γ2 = 180◦ (i.e., to the
negative values of γ2 in the plot of Ub(θ, γ1, γ2)). The difference is, however, that the cluster
of pairs with positive γ2 and θ is much more populated than that of negative γ2 and large θ

values, which is caused by the predominance of α-helical structures in proteins. Finally, for
γ1 = 180◦, the large cluster of points with θ spread from about 90◦ to about 150◦ and large and
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Figure 4. (Continued.)

negative γ2 reflects the corresponding broad region of the minimum in the plot of Ub(θ, γ1, γ2).
However, the region with large negative γ2 is overrepresented in the scatter plot compared to
that of the plot of Ub(θ, γ1, γ2) because residues with at least one extended γ angle occur most
frequently in β-sheets in which both γ1 and γ2 are extended. In summary, the sections of the
calculated Ub(θ, γ1, γ2) surface are similar to the data from PDB statistics; however, the latter
(and also the statistical Ub potentials currently used in UNRES) are clearly influenced by long-
range interactions which are present in regular α-helical and β-sheet structures. Consequently,
replacing the current statistical Ub potentials with those derived in the current work will free
the force field from the bias towards the local geometry of the regular structures present in the
current potentials. This bias is probably one of the reasons that the current UNRES force field
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Figure 4. (Continued.)

is good at prediction of the structures of proteins containing predominantly regular elements
but is less successful with proteins with large loops and segments with undefined secondary
structure [12].

Replacing the central (Y ) residue with glycine (the AGA triad) does not change the Ub

surface qualitatively, which suggests that the local interactions within the third residue in
the triad mainly influence the Ub surface. This conclusion is supported by the fact that the
Ub surfaces for AAG, AGG, and also GGG (not shown) exhibit a common pattern different,
however, from that of AAA, with less pronounced dependence on γ2 and a large minimum
region at θ around 100◦ for γ1 = −60◦ and γ1 = 180◦, and at θ around 140◦ for γ1 = 60◦.
When the first residue is replaced with glycine, the Ub surface for γ1 = −60◦ becomes very
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Figure 5. Scatter plots of γ2, θ pairs of all non-proline triads using the protein database from [6]
drawn for the γ1 angles from 60◦-wide intervals centred at values corresponding to those of figure 4.

similar to that for γ1 = 60◦ because of the fact that glycine is an achiral residue. However,
a seemingly more drastic replacement of the alanine residue at the X position with a proline
residue results in little change of the Ub surface with respect to that of the AAA triad.

Replacement of the alanine residue in the second (Y ) or third (Z ) position or both with
proline results in major changes in the Ub surface. When proline appears in the second position,
the Ub surface becomes virtually independent of γ1 and little dependent on γ2, and exhibits one
minimum region around θ = 100◦; the surface observed for GPA (not shown) looks like that
of APA. Some differences are observed for the APG (shown) and GPG (not shown) triads;
however, the position of the minimum region and the weak dependence on the γ1 and γ2 angles
remains the same. The surfaces obtained for proline in the second and the third positions are yet
more different from all the others with two minima, one centred around θ = 90◦ and γ2 = 180◦
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Figure 6. Potentials of mean force of virtual-bond-angle bending, Boltzmann-averaged over the
virtual-bond dihedral angles γ1 and γ2 (solid line), compared with the statistical potential computed
in our earlier work [6] from the PDB statistics, for Ala-type virtual-bond angles (dashed line).

and another one for θ = 100◦ and γ2 = −30◦. The surfaces are effectively independent of γ1.
The surfaces obtained for the PPP and GPP triads (not shown) are qualitatively the same as
that shown for APP. When proline is present only in the third position, the Ub surface also
exhibits a weaker dependence on γ1 with a single curved minimum region with θ around 140◦
for γ2 ≈ −60◦ and θ around 100◦ for other values of γ2. The great influence of proline
in the second and third position on the Ub surface can easily be explained in terms of the
severe restriction on the λ(1) angle of this amino-acid residue because of the presence of a
pyrollidine ring. Consequently, the region of integration in equation (15) becomes severely
restricted compared to those for triads in which alanine or glycine residues are present in the Y
and Z positions.

In order to compare the potentials determined in this work with the statistical Ub potentials
in the current UNRES [6], we computed the curve corresponding to Ub, Boltzmann-averaged
over the γ1 and γ2 angles, 〈Ub(θ)〉γ1,γ2 (equation (19)), for the AAA triad.

〈Ub(θ)〉γ1,γ2 = −β−1 ln

{
(2π)−2

∫ π

−π

∫ π

−π

exp
[−βUb(θ, γ1, γ2)

]
dγ1 dγ2

}
. (19)

We plotted 〈Ub(θ)〉γ 1,γ2 computed from equation (19) together with the corresponding
statistical potential obtained from the data of [6] in figure 6. It can be seen from figure 6
that both 〈Ub(θ)〉γ1,γ2 and the statistical potential have two minima, one corresponding to
the smaller and the other one to greater angles θ . As follows from the analysis presented
earlier in this section and from the analysis of the statistical potential [6], the first minimum
corresponds to folded and the second to the extended structures. It can be seen (figure 6) that
the second minimum is not pronounced and the first is shifted to θ = 90◦ and is narrower in
the statistical potentials, which is caused by the fact that most of the data pertained to α-helical
structures. The potentials determined in this work are not biased to any organized structure and
are, therefore, expected to improve the performance of the UNRES force field. In particular,
we expect that the new potentials will improve the force field for predicting the loop regions
and parts with undefined secondary structure, where the bias of the statistical potentials is
expected to have the greatest importance. The new Ub potentials will be incorporated into
UNRES together with the new physics-based Urot potentials which are now being determined
in our laboratory from the energy surfaces of terminally-blocked amino-acid residues. After
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this is accomplished, the energy-term weights in equation (1) will be redetermined by using
our hierarchical-optimization method [11, 12], and the performance of the complete force field
in the prediction of protein structures and folding pathways will be assessed on known proteins.
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